Relational Reinforcement Learning An Overview

نویسندگان

  • Prasad Tadepalli
  • Robert Givan
چکیده

Relational reinforcement learning RRL is both a young and an old eld In this pa per we trace the history of the eld to re lated disciplines outline some current work and promising new directions and survey the research issues and opportunities that lie ahead

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-agent Relational Reinforcement Learning

In this paper we study Relational Reinforcement Learning in a multi-agent setting. There is growing evidence in the Reinforcement Learning research community that a relational representation of the state space has many benefits over a propositional one. Complex tasks as planning or information retrieval on the web can be represented more naturally in relational form. Yet, this relational struct...

متن کامل

Relational Reinforcement Learning for Agents in Worlds with Objects

In reinforcement learning, an agent tries to learn a policy, i.e., how to select an action in a given state of the environment, so that it maximizes the total amount of reward it receives when interacting with the environment. We argue that a relational representation of states is natural and useful when the environment is complex and involves many interrelated objects. Relational reinforcement...

متن کامل

Multi-Agent Relational Reinforcement Learning Explorations in Multi-State Coordination Tasks

In this paper we report on using a relational state space in multi-agent reinforcement learning. There is growing evidence in the Reinforcement Learning research community that a relational representation of the state space has many benefits over a propositional one. Complex tasks as planning or information retrieval on the web can be represented more naturally in relational form. Yet, this rel...

متن کامل

Relational State Abstractions for Reinforcement Learning

Reinforcement learning deals with learning optimal or near optimal policies while interacting with an external environment. The applicability of reinforcement learning has been limited by large search spaces and by its inability to re-use previously learned policy on other, although similar, problems. A relational representation can be used to alleviate both problems. In particular, this paper ...

متن کامل

Relational action model learning and planning integration Relational action model learning and planning integration

Résumé : This paper addresses a relational reinforcement learning-like problem with general action-model relational learning and planning techniques. We propose an integrated system for both action model learning and action selection in the context of adaptive behavior of autonomous agents. Learning is incremental. It operates with relational representations and produces disjunctions of 1st ord...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004